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Brane Cosmology From Heterotic String Theory

Apostolos Kuiroukidis1,2 and Demetrios B. Papadopoulos1

We consider brane cosmologies within the context of five-dimensional effective actions
with O(α′) higher curvature corrections. The actions are compatible with bulk string
amplitude calculations from heterotic string theory. We find wrapped solutions that
satisfy the field equations in an approximate but acceptable manner given their com-
plexity, where the internal, four-dimensional, scale factor is naturally inflating, having
an exponential De-Sitter form. The temporal dependence of the metric components
is nontrivial so that this metric cannot be factored as in a conformally flat case. The
effective Planck mass is finite and the brane solutions can localize four-dimensional
gravity while the four-dimensional gravitational constant varies with time. The Hubble
constant can be freely specified through the initial value of the scalar field, to conform
with recent data.
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1. INTRODUCTION

Recent developments in string theory suggest that matter and gauge interac-
tions may be confined on a brane, embedded in a higher dimensional space (bulk),
while gravity can propagate into the bulk (for reviews see Brax and van de Bruck,
2003; Dick, 2001; Maartens, in press; Papantonopoulos, 2000; Quevedo, 2002).
Within this context several toy models have been constructed to address such issues
as the hierarchy and cosmological constant problems (Binetruy et al., 2000; Lukas
et al., 1999a,b). In particular, the large hierarchy between the Standard Model and
Planck scales could be explained for an observer on a negative tension flat brane,
if the extra dimension was taken to be compact (Randall and Sundrum, 1999a,b).
The possibility of a large noncompact dimension was realized in Arkadi-Hamed
et al. (1998) and Antoniadis et al. (1998), while it was shown in Randall and
Sundrum (1999a,b) that warping of five-dimensional space could lead to localiza-
tion of gravity on the brane, even though the size of the extra dimension was of
infinite proper length.
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A simple, interesting alternative model has been considered in Arkani-Hamed
et al. (2000), Kachru et al. (2000a,b), where a bulk scalar field φ is coupled to the
brane tension Tbr. This is the all-loop contribution to the vacuum energy density
of the brane, from the Standard Model fields. For the 4D cosmological constant
problem considered there, solutions of the field equations were found, which
localize gravity, but possess naked singularities at finite proper distance. This
proper distance is given by yc = 1/κ2

(5)Tbr where the five and four-dimensional

Planck scales k2
(5) = M−3

(5) , κ2
(4) = M−2

(4) are related by

Tbr = κ2
(4)

κ4
(5)

= M6
(5)

M2
(4)

. (1)

Then if we momentarily identify the 4D cosmological term with the brane
tension λ = Tbr ∼ (1TeV)4 = (103 GeV)4 ∼ 10−64M4

(4) we obtain

M(5) � 108 GeV, yc � 1 mm, (2)

which is acceptable by present day experiments.
It was later realized that the bulk action should also contain the Gauss-Bonnet

(GB) term

LGB = R2 − 4RabR
ab + RabcdR

abcd , (3)

which is the leading quantum gravity correction, and the only to provide second-
order field equations. Some of the early works on the GB gravity include Boulware
and Deser (1985) and Wheeler (1986), while the corresponding brane cosmology
has been studied, among others, in Bento and Bertolami (1989, 1996), Charmousis
and Dufaux (2002), Deruelle and Dolezel (2000), Easson (2003), Easson and
Brandenberger (1999), Germani and Sopuerta (2002), Gregory and Padilla (2003),
Kim et al. (2000), Kofinas et al. (2003), Lidsey et al. (2002), and Nojiri and
Odintsov (2000). The corresponding generalized junction conditions appeared in
Davis (2003) and Gravanis and Willison (2003).

If we consider the action (Lidsey, in press)

S =
∫

d5x
√

|g|
[
R − 1

2
(∇φ)2 − 1

2
e−φ(∇σ )2 − �e−2φ

]

+
2∑

i=1

(−1)i
√

24�

∫
d4x

√
|gi |e−φ (4)

then Eq. (4) introduces the fact that the bulk cosmological constant couples to the
scalar field through the exponential potential term. However, serious arguments
were given in Binétruy et al. (2002) and Mavromatos and Rizos (2000, 2003), that
one must consider a modified action, instead of the usual one used in Bento and
Bertolami (1989, 1996), Charmousis and Dufaux (2002), Deruelle and Dolezel
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(2000), Easson (2003), Easson and Brandenberger (1999), Germani and Sopuerta
(2002), Gregory and Padilla (2003), Kim et al. (2000), Kofinas et al. (2003), Lidsey
et al. (2002), and Nojiri and Odintsov (2000) where the GB term is multiplied by a
constant. The modified action comes from heterotic string amplitude calculations,
truncated to five dimensions (Gross and Sloan, 1987; Metsaev and Tseytlin, 1987).
In this action the GB combination enters through a multiple of the exponential of
the dilaton field.

To write this action we use the constants κ2
(i) = 8πGi = M2−i

(i) , i = 4, 5,
which represent the fundamental, five-dimensional and the effective four-
dimensional Planck masses. The bulk cosmological constant has dimensions
�(5) = [energy]2, defining an inverse length scale squared, effectively an AdS5

curvature. Also, a brane cosmological constant would have dimensions �(4) =
[energy]2 and divided both by the respective mass scales κ2

(i) would have dimen-
sions similar to the corresponding brane tensions. With this normalization, the
action used in Binétruy et al. (2003) and Mavromatos and Rizos (2000, 2003) is
dimensionless, and can be written as

S1 = 1

2κ2
(5)

∫
d5x

√|g(5)|
{
R − ζ (∇φ)2 + α e−ζφ

[
R2

GB + c2ζ
2 (∇φ)4

]}
(5)

Here α = α′/8g2
s , with ls = √

α′ the string length, and gs = exp(−φ0) the
string coupling constant, where φ0 is the vacuum expectation value of the dilaton
field. Also ζ = (4/3) and c2 = (D − 4/D − 2) and in our case c2 = (1/3).

In addition we take as

S2 = −1

2κ2
(5)

∫
d5x

√|g(5)|
[
2�(5)V (φ)

]
(6)

Using this normalization the bulk potential and also φ is dimensionless. In Binétruy
et al. (2003), it was taken as V (φ) = eζφ and this will also be our choice.

So with this normalization the various Si are dimensionless. We take as

S = S1 + S2 (7)

Solutions to the first part of the action were studied in Binétruy et al. (2003),
Charmousis et al. (2003), Gross and Sloan (1987), Mavromatos and Rizos (2000,
2003), and Metsaev and Tseytlin (1987). However, due to the severe complexity
of the equations of motion only metrics of the form

ds2 = e2A(y)ηµν dxµ dxν + dy2 (8)

were considered. This choice limits the range of solutions for realistic internal,
four-dimensional spacetimes. One of the interesting cases to consider is an inflating
internal space. This is because it is generally accepted that the Universe now
undergoes accelerated expansion (Kiddle, 2001; Knop et al., in press; Perlmutter
et al., 1999; Seto et al., 2001). In this paper we write the field equations for the



72 Kuiroukidis and Papadopoulos

action of Eq. (7), and use a metric with internal De-Sitter-like scale factor. The
extreme complexity of the field equations does not allow for an exact, mathematical
solution. However for a continuous range of one parameter of the model, three of
the field equations coincide, with acceptable accuracy, permiting a class of models
with interesting characteristics to appear. First the action is a realistic one, coming
from string theory. Also the brane, located at y = 0, has an inflating internal scale
factor. Gravity is localized on the brane, so the effective four-dimensional Planck
mass is finite. The class of models does not obey a fine-tuning condition, in the
sense that the bulk cosmological constant only controls the temporal evolution
of the scalar field. The Hubble constant is determined from the initial value of
the scalar field so that it can be adjusted to any value without fine-tuning of the
parameters of the action.

2. EQUATIONS OF MOTION

The metric will be of the form

ds2 = −n2(t, y) dt2 + a2(t, y)hij (x) dxi dxj + b2(t, y) dy2 (9)

The three-metric from Equation (9) is assumed to represent a maximally symmetric
space

(3)ds2 = a2hij (x) dxi dxj = a2

[
dr2

1 − kr2
+ r2 d�2

II

]
(10)

with scalar three-curvature (3)R = 6k/a2, k = 0,±1.
Variation of the action with respect to the five dimensional metric gives:

Gµν − ζ (∇µφ)(∇νφ) + ζ

2
gµν(∇φ)2 + gµν�(5)V (φ) + 2αe−ζφHµν

+ 4αPµανβ∇α∇β(e−ζφ) + αe−ζφc2ζ
2[2(∇φ)2∇µφ∇νφ − 1

2
gµν(∇φ)4] = 0

(11)

Here we have (Binétruy et al., 2002; Deruelle and Madore, in press)

Hµν = RRµν − 2RµαRα
ν − 2RαβRµανβ + Rabc

µ Rνabc

− 1

4
gµνR

2
GB

Pµανβ = Rµανβ + Rµβgνα + Rναgµβ − Rµνgαβ − Rαβgµν

+ 1

2
R(gµνgαβ − gµβgνα) (12)
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Varying with respect to φ we obtain

2ζ∇2φ − αζe−ζφ
[
R2

GB − 3c2ζ
2(∇φ)4] − 2�(5)V

′(φ)

−4αc2ζ
2e−ζφ[(∇φ)2∇2φ + 2∇µφ∇νφ∇µ∇νφ] = 0 (13)

Greek indices denote five-dimensional components (0, 1, 2, 3, 5), while Latin
three-dimensional.

The (00)-component of the generalized Einstein’s equations is

3n2F + 3n2

b2

(
−a′

a
+ a′b′

ab
+ ȧbḃ

an2

)
− 2

3
(φ̇)2 − 2

3

n2

b2
(φ′)2 − n2�(5)V (φ)

+ 2αe−4φ/3H00 + 16α

3b4
P0505

[
−φ′ + 4

3
(φ′)2 + bḃ

n2
φ̇ + b′

b
φ′

]
e−4φ/3

+ 16α

3a4
P0i0jh

ij

(
aȧ

n2
φ̇ − aa′

b2
φ′

)
e−4φ/3

+ 32α

27
e−4φ/3(∇φ)2

[
3

4
φ̇2 + 1

4

n2

b2
(φ′)2

]
= 0 (14)

where we use the conventions

F := 1

a2

(
ȧ2

n2
− (a′)2

b2

)
+ k

a2
, (∇φ)2 = − 1

n2
φ̇2 + 1

b2
(φ′)2 (15)

A dot denotes a partial derivative with respect to the time, while a prime denotes
derivative with respect to the extra dimension, denoted by y.

The (05)-component of the Einstein’s equations is given by

−3

(
ȧ′

a
− ȧn′

an
− a′ḃ

ab

)
− 4

3
φ̇φ′ + 2αe−4φ/3H05 + 32α

27
e−4φ/3(∇φ)2φ̇φ′

+ 16α

3b2n2
P0505

[
−φ̇′ + 4

3
φ̇φ′ +n′

n
φ̇ + ḃ

b
φ′

]
e−4φ/3

+ 16α

3a4
P0i5jh

ij

(
aȧ

n2
φ̇ − aa′

b2
φ′

)
e−4φ/3 = 0 (16)

The (55)-component is given by

−3b2F + 3b2

n2

(
− ä

a
+ ȧṅ

an
+ a′nn′

ab2

)
− 2

3
(φ′)2 − 2

3

b2

n2
(φ̇)2 + b2�(5)V (φ)

+ 2αe−4φ/3H55 + 16α

3n4
P0505

[
−φ̈ + 4

3
(φ̇)2 + ṅ

n
φ̇ +nn′

b2
φ′

]
e−4φ/3
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+ 16α

3a4
P5i5jh

ij

(
aȧ

n2
φ̇ − aa′

b2
φ′

)
e−4φ/3

+ 32α

27
e−4φ/3(∇φ)2

[
3

4
(φ′)2 + 1

4

b2

n2
(φ̇)2

]
= 0 (17)

The (ij )-component of the generalized Einstein’s equations is a multiple of hij .
Setting this proportionality term equal to zero gives

− 2

(
aä

n2
− aȧṅ

n3
− aa′n′

nb2

)
− 2

(
−aa′

b2
+ aa′b′

b3
+ aȧḃ

bn2

)
− a2F

− a2

n2

(
b̈

b
− nn′′

b2
+ nn′b′

b3
− ṅḃ

nb

)
+ 2

3
a2(∇φ)2 + a2�(5)V (φ)

+ 2αe−4φ/3

(
1

3
hijHij

)
− 8α

27
e−4φ/3a2(∇φ)4

+ 16α

9n4
Pi0j0h

ij

[
−φ̈ + 4

3
(φ̇)2 + ṅ

n
φ̇ + nn′

b2
φ′

]
e−4φ/3

− 32α

9n2b2
P0i5jh

ij

[
−φ̇′ + 4

3
φ̇φ′ + n′

n
φ̇ + ḃ

b
φ′

]
e−4φ/3

+ 16α

9b4
Pi5j5h

ij

[
−φ′ + 4

3
(φ′)2 + bḃ

n2
φ̇ + b′

b
φ′

]
e−4φ/3

+ 16α

9a4
Pikjmhijhkm

(
aȧ

n2
φ̇ − aa′

b2
φ′

)
e−4φ/3 = 0 (18)

The contraction hijHij is given in the Appendix.

3. REDUCTION AND AN EXACT FINE-TUNED SOLUTION

We consider flat spatial sections (k = 0) in Eq. (10) and introduce the
following ansatz:

a = a(t)A(y), n = n(t)N (y), b = b(t)B(y),

φ = σ (t) + φ(y) (19)

where

a(t) = a0e
Ht , b(t) = b0e

−2σ1Ht/3,

n(t) = n1b(t), σ (t) = σ1Ht + σ2 (20)
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with H, a0, b0, σ1, n1, σ2 constants. The field equations become exactly those
presented in the Appendix. Now we make the assumption

A(y) = A0e
f1y, B(y) = B0e

f2y

N (y) = N0e
f2y, φ(y) = −3

2
f2y + φ0 (21)

We obtain five equations constraining the numerical parameters of our solution.
Inspecting the metric and the resulting equations it is easy to see that we can set
a0 = 1 = A0. It appears, therefore, that there exist eight (8) independent parame-
ters, namely H, f1, f2, N1 := n1N0, ,
0 := σ2 + φ0, σ1, b0, and B0.

The solution for the metric is therefore written

ds2 = −b2
0N

2
1 e−4σ1Ht/3e2f2y dt2 + e2Hte2f1y

[
dx2

1 + dx2
2 + dx2

3

]
+ b2

0B
2
0e−4σ1Ht/3e2f2y dy2 (22)

However, a closer inspection shows that rescaling the metric and redefining the in-
ternal coordinates xj , we can set b0 = 1 = N1 = B0. This also occurs from the five
field equations. So there exist five (5) independent constants H, f1, f2, 
0, σ1

and the metric takes the final form

ds2 = −e−4σ1Ht/3e2f2y dt2 + e2Hte2f1y
[
dx2

1 + dx2
2 + dx2

3

]
+ e−4σ1Ht/3e2f2y dy2 (23)

The solution for the scalar field is

φ(t, y) = σ1Ht − 3

2
f2y + 
0 (24)

Inspecting the field equations we see that the following

σ1 = 0, f1 = f2 := f, H 2 = f 2,

e4
0/3 = 2αf 2, f 2 = −4

3
�(5),

8

3
α�(5) = −1 (25)

is an exact fine-tuned solution, which means that the cosmological constant and the
Hubble constant are directly related. This solution though exact does not localize
four-dimensional gravity on the brane, located at y = 0.

4. CLASSES OF NON–FINE-TUNED SOLUTIONS

We set f1 = f2 = f into the five equations of the Appendix and use the
metric, Eq. (23). We thus have four constants, namely f, H, 
0, σ1. From the
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(05)-equation we obtain

f 2 = 2

9

(
1 − 8

3
σ1 − 2

9
σ 2

1

)
H 2 (26)

Equation (26) constrains the allowed value of σ1 so that −12.36 � −6 − 9
√

2
2 ≤

σ1 ≤ −6 + 9
√

2
2 � 0.364.

We consider now that |σ1| is much smaller than unity. Then we keep the
first-order terms in the field equations of the Appendix, with respect to σ1. We
obtain

f 2 = 2

9

(
1 − 8

3
σ1

)
H 2 (27)

The last term, in the parentheses of Equation (26), contributes 0.02 to the sum
only, validating our approximation, for the above range of σ1. Using Equation (27)
into the φ-equation, we obtain for the bulk cosmological constant,

�(5)e
4
0/3 = −

(
1 + 1

3
σ1

)
H 2

+αe−4
0/3

(
−62

9
+ 20

27
σ1

)
H 4 (28)

From the addition of the (00) and (55) components, we obtain

(4σ1 + 3) = 2αe−4
0/3

(
4

3
− 16

9
σ1

)
H 2 (29)

From the (00)-equation, using Eq. (28), we get

(σ1 + 3) + αe−4
0/3

[
−4

3
+ 28

9
σ1

]
H 2 = 0 (30)

Finally the (ij)-equation, with the aid of Eq. (28), gives

3(σ1 + 1) + 4

81
αe−4
0/3

[
503

3
σ1 + 85

]
H 2 = 0 (31)

Given the complexity of the field equations, the simplicity of the above,
reduced field equations, is quite interesting.

We define F (σ1) := αe−4
0/3H 2. This function assumes the forms
F1, F2, F3 as these emerge from Eqs. (29), (30) and Eq. (31), respect-
ively.

Given the extreme complexity of the field equations it is surprising that over
the whole range of −0.3 ≤ σ1 ≤ 0.2 the two functions F1(σ1), F2(σ2) coincide.
Also, in this interval and in −0.9 ≤ σ1 ≤ −0.55 these three functions coincide
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Fig. 1. The functions Fi (σ1) over −0.3 ≤ σ1 ≤ 0.4.

with adequate accuracy as is shown in Figs. 1–2. The difference in their value is
suppressed in this intervals, as compared to other intervals.

Our aim here is not to give mathematically exact solutions, but to stress
that with acceptable accuracy we can find cosmological models that show many
interesting features. We assume therefore, given also the approximation we have
made for small |σ1|, that three of the five field equations, namely the (00)+(55),
(00), and (ij) components, give

F (σ1) := αe−4
0/3H 2 � F1(σ1) = 3 + 4σ1(
4
3 − 16

9 σ1
) (32)

where σ1 ∈ (−0.9,−0.55) ∪ (−0.3, 0.2).
Therefore, the Hubble constant in string units is given in terms of the initial

value of the scalar field as

αH 2 = e4
0/3 3 + 4σ1(
4
3 − 16

9 σ1
) (33)

and so f 2, which determines the spatial dependence of the scalar field through
Equation (24), is determined through Eq. (27).
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Fig. 2. The functions Fi (σ1) over −0.9 ≤ σ1 ≤ −0.5.

Multiplying Eq. (28) by α, and using Eq. (33), we obtain the bulk cosmological
constant in string units,

α�(5) = (3 + 4σ1)(
4
3 − 16

9 σ1
)2

[
−22 − 24σ1 + 32

9
σ 2

1

]
(34)

The dependence of the bulk comological constant on σ1 is shown in Fig. 3.
Thus we do not have to fine-tune the Hubble constant or the bulk cosmological

constant �(5). These, as well the constant f , are specified in terms of σ1, which
controls the temporal evolution of the scalar field through Eq. (24), and the initial
value 
0. So σ1 determines the bulk cosmological constant through Eq. (34), but
the Hubble constant H is determined by the initial value of the scalar field as
well, (Eq. (33)) and can be freely adjusted. The metric is given by Eq. (23) (with
f1 = f2 = f ) and the scalar field by Eq. (24).

Finally if we assume that f1 
= f2, there will, in general, exist exact solutions
of the five field equations, for the five independent constants f1, f2,H, σ1,
0.
These will also be determined in terms of �(5). In order to determine them one
has to resort to numerical methods and this will be the subject of a future work.
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5. LOCALIZATION OF GRAVITY

The four-dimensional scalar curvature, with flat spatial sections for the
metric of Equation (10), is given by (4)R = ( 6

n2 )( ä
a

− ȧṅ
an

+ ( ȧ
a

)2). If one substi-
tutes the five-dimensional scalar curvature R and the Gauss–Bonnet contribution
into the action functional, then the integrated coefficient of the four-dimensional
scalar curvature will give the effective four-dimensional Planck mass as per-
ceived by a four-dimensional observer, located on the brane (Binétruy et al., 2003;
Mavromatos and Rizos, 2000, 2003). Doing this in a careful manner we obtain

M2
Pl = M3

s

∫ R

0
dyb

[
1 + 8αe−4φ/3

b2

(
−a′

a
+ a′b′

ab
+ ȧbḃ

an2

)]

= M3
s e−2σ1Ht/3 1

|f |
[
1 − e−|f |R] (

1 − 16

3
σ1

3 + 4σ1
4
3 − 16

9 σ1

)
(35)

This must be finite as R → +∞, so this is why we have chosen the f < 0 solution
of Eq. (27). For the negative y-direction we can choose f > 0 and match the two
bulk solutions continuously on the brane.

The quantity in the large parentheses of Eq. (35) is positive for the range of
σ1 ∈ (−0.9,−0.55) ∪ (−0.3, 0.1), giving an overall positive Planck mass. So these
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cosmological solutions can localize four-dimensional gravity. Also, we observe
that we naturally obtain a time-varying gravitational constant. This occurs due to
the nontrivial, different time dependences of the various metric components of the
metric, Eq. (23), and also due to the fact that we have the exponential e4
0/3 in
Eq. (33). The last comes from the coefficient of the GB term of the action, Eq. (5).

6. DISCUSSION

We have considered the action that results from a consistent truncation to
five dimensions of the heterotic string. This action has higher-order gravitational
corrections of the form of the Gauss–Bonnet term. However this term enters the
expansion, multiplied not only by the string constant but also by the exponential
of the scalar field. This makes the resulting field equations very complicated,
compared to the usual case when the exponential term is absent. Due to this fact,
only solutions with the four-dimensional Poincare-invariant form of Eq. (8), have
been considered in the literature. In this paper we showed that there exist one exact
and a family of approximate solutions, continuously dependent on the parameter
σ1, with the metric given by Eq. (23).

The important features of these cosmological models can be summarized
as follows: The metric cannot be factored as in a simple, conformally flat case,
since in general σ1 
= −(3/2). The temporal and spatial dependence of the metric
components is nontrivial and does not allow a conformally flat solution even in
the four-dimensional subcase. The metric cannot be simplified any further by a
coordinate transformation. Also the brane, situated at y = 0, can localize four-
dimensional gravity. This is due to the fact that the four-dimensional effective
Planck mass is finite and positive for the allowed range of the parameter σ1.

More importantly the parameters of the theory need not be fine-tuned. By this
we mean that the parameters of our action such as the bulk cosmological constant
need not be fine-tuned to a specific value in order to obtain a desired solution.
The bulk cosmological constant, is directly related to the temporal evolution of
the scalar field, i.e., to σ1. The Hubble constant, however, is freely determined
from the initial value of the scalar field and so a proper choice of the last can
accomodate observational data.

Finally the four-dimensional gravitational constant varies with time and fol-
lows the exponential expansion of the four-dimensional scale factor (Antoniadis
et al., 1998; Arkadi-Hamed et al., 1998; Uzan, 2003).

The action used in this paper is a realistic one because it occurs in a consistent
way from heterotic string theory (Gross and Sloan, 1987). So it is important
to search for brane cosmological solutions that give realistic four-dimensional
cosmological models. Because the field equations are complicated, the use of
combined numerical and analytical techniques is necessary. One can numerically
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search for solutions with the metric assuming the form of Equation (23) and
without any other assumption. Work along these lines is in progress.

APPENDIX

Contracting the first of Eqs. (12) we get

hijHij = −1

4
a2R2

GB + a2

n2
H00 − a2

b2
H55. (A.1)
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